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CALCULATION OF NON-STEADY-STATE FLOWS OF RELAXED GASES 

IN CHANNELS 

A. V. Chirikhin UDC 532.542+532.54/55.011.55 

Maintaining control at supersonic velocities in the atmosphere requires experimental 
investigations of flow around aircraft for a wide range of Mach and Reynolds numbers. One 
technique for modeling such flow involves the use of a high-enthalpy wind tunnel. Examples 
of such set-ups include pulse-driven tunnels with gas heated by a discharge in a confined 
volume [i] and tunnels with electric-arc heaters [2]. In the first case all of the working 
processes are non-steady-state, and in the second case one begins with non-steady-state 
output where the established flow is in the ripple state. It is natural to assume that in 
the given cases the nonlinear interaction of wave structures has a significant effect on 
the formation of the flow of a real gas. Such an interaction arises when the diaphragm in a 
tunnel breaks down and when the energy input is periodic. Of particular importance are 
the problems in [3], which are related to pulsed heating of the CO 2 flow by an electrical 
discharge with a small duration. It was shown in [4] that the modified technique of S. K. 
Godunov is an effective way for studying similar flows. In this study Godunov's technique 
relating to flows with external energy input [4] is applied for calculations of flows with 
vibrational relaxation. This technique is shown to be useful for numerical modeling of 
steady-state flows in nozzles, non-steady-state flows in pulse-driven wind tunnels, and for 
flows with periodic energy input into the subsonic zone of a c~annel, which reproduces the 
flowing part of a coaxial heater and a supersonic nozzle of a typical high-enthalpy wind 
tunnel. Questions regarding similarity and the modeling of non-steady-state flows With 
vibrational relaxation are considered. 

i. Nonequilibrium energy exchange between vibrational and active degrees of freedom 
for molecules (the V-T process) reflects the basic behavior of relaxation phenomena and 
allows one to easily model the effect of relaxation on the flow of a high temperature gas. 
On the other hand, such a calculation technique can be used for solving a variety of 
problems related to nonequilibrium flow of carbon dioxide and carbon dioxide mixtures [5]. 
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We will consider quasi-one-dimensional non-steady-state flow of a nonviscous, non- 
thermally conducting gas in a channel of variable cross section taking into account vibra- 
tional relaxation. We will assume that in some part of the channel the energy of vibration 
can play the role of a parameter. Such an approach allows one to consider vibration as a 
source (a discharge) of energy and the V-T process as a means of external energy exchange 
whose description is given by the Landau-Teller model. The corresponding system of dimension- 
less equations for the relaxation dynamics of the gas have the form 

ap apuf O, Sh 9 au au Op (1 .1)  Sh f ~f + ~ b-/- + 9u~-7 + ~ = O~ 

( or or) Op Op 
u - - I  • ~Sh p ~ - +  9u -gTx -- Sh bT- -- u ~Tz = Sh 9q.,. 

o~ ae ~ (T 0 - e (r) 
S h ~ + u ~ x = S h q ~  q ~i(P, T) ~ 

1 F - - t  ](x)= F-- 6, p = p  T, e (T)=11 exp 

"~i (t), T) = -~ exp 

0 A B ( 1 . 2 )  
S h  = to = 4 = 4 = 

Here 0 is the density; p, pressure; u, velocity; T, T i, statistical and vibrational tempera- 
tures, respectively; e(T), e(Ti), vibrational energies; t, time; ~i, time for vibrational 
relaxation; f and F, areas of the flow filaments; x, position; R, gas constant; ~, adiabatic 
freezing exponent; 8, characteristic temperature of the vibrations; A and B, constants in 
the equation for the relaxation time T~= (A~)exp (BT-II~); ; ~, characteristic longitudinal 
scale; Sh, analog to the Strouhal number; Iz_ 3, parameters; and the zero indices denote the 
characteristic gauges of the corresponding variables. Hence, the density is referenced to 
p~ ~ the velocity to (RT~ , the energy to RT ~ and the position to ~. 

We will use the initial values of p and T for some initial cross section F ~ as their 
gauges, and the quantity of this cross section will be used as a gauge for the area of the 
flow filament. Then, for the initial cross section p = T = f= i. 

We will assume that in the channels with equivalent dependences for f(x) the initial 
distributions of the dimensionless functions p(x), T(x), and u(x) are reproduced. In the 
given case the dimensionless distribution of the vibrational energy e(x) and the parameters 
in (1.2) remain free parameters, which will determine non-steady-state flow with vibrational 
relaxation. It is easy to see that for a real gas the conditions for reproducing the para- 
meters in (1.2) require the duplication of the initial distributions of the dimensional 
values for the vibrational energy, the velocity, the statistical temperature, and the parameters 

= t~ ~ ~ = Ut ~ ( 1 . 3 )  

Therefore, the characteristic gas dynamics gauge s should be selected from the real conditions 
of flow, and the product of the parameters 0 and $ give still another similarity parameter 
L = ~p0. 

It would be interesting to model flows with vibrational relaxation using different gases. 
The adiabatic freezing exponent and the parameter K play specific roles in this case. One 
can then establish a correspondence between the flows of the different gases with the condi- 
tions of reproducibility for K and 13 on the basis of (1.2), where one of the gauge parameters, 
p0, t o ' or ~, is permitted to vary freely. 

In particular, the calculations in [6, 7] allow for steady-state flows of diatomic gases 
in hyperbolic Laval nozzles. These calculations were made using the interpolation equation of 
Finni [8] for the relaxation time. 

2. The principles behind devising a difference scheme for integrating system (I.i) using 
the Godunov method is well known [4, 5, 9]. The equations for the conservation of the flow 
rate and for the quantity of flow are identical to the equations for an ideal gas. Therefore, 
we will use a difference approximation only for the equations of energy and vibrational relax- 
ation 
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t ( t  ,2) 
:r - 1 (Plr)m+l/2 = Pm+ll2 ~ Y -t- T rn+l/2 

(Pe) ~+l / s  = Pro+l/2 e - -  -~ q. ~+1,,2 Ax ( I~  -t- Ira+l) [ (pu/e)m+l - -  ( p u l e ) ~ ]  - -  y (py)  . 

(2.1) 

Here, T is an integration step in time, and the remaining definitions are conventional (e.g., 
see [4]). 

Equations (2.1), which are supplemented by the corresponding approximations for the equa- 
tions of the flow rate and the quantity of flow, are the basis for a numerical algorithm with 
the condition that one can correctly determine the values of these parameters on the boun- 
daries of the cells. These parameters are determined from the solution of the problem re- 
garding an arbitrary breakdown. A similar approach can be used for the flow of a relaxing 
gas if the integration step in time T is chosen taking into account the freezing conditions 
for the relaxation processes in shock waves [4]. Since for flows with vibrational relaxa- 
tion the adiabatic freezing exponent is constant over the entire field of the flow, the 
technique in [9] can be directly applied for calculating the breakdown in this case. 

The algorithms mentioned above was tested by making calculations of steady-state, non- 
equilibrium flow of nitrogen. The calculations were made for a flat nozzle, where the length 
of the supersonic section was six times greater than the length of the subsonic section. 
The profiles of the subsonic and supersonic sections were hyperbolic, which were mated to 
regions of constant cross section with cubical parabolas, where f/f, = 5 at the input and 
f/f, = i0 at the output of the nozzle. The channel was uniformly subdivided along the 
longitudinal coordinate, and the total number of spacings was between i00 and 400. The 
geometric parameters of the nozzle and the stagnation parameters P0, To were assigned in 
such a way that k = 4.7 from [7], and the results were compared with calculations 
(k = h,/2T~(po, T0) tg ~(2BTo) I/~, where h, is the height of the critical cross section, 
and 29 is the angle between the asymptotes of the hyperbola). 

The initial distributions of the gas dynamic functions correspond to the flow of an ideal 
gas with < = 1.4, where the temperature of the vibrations is initially equal to the local 
statistical temperature. The boundary conditions at the input and output of the channel 
were formulated according to [4] taking into account flows with nonequilibrium condensation. 
The integration step in time x is chosen framthe Kurant condition along with the condition 

T ( 0 .3Ti ,  ( 2 . 2 )  

which ensures that the iterations converge for all the considered variants. 

For all calculations e = 3340 K, and the relaxation time was determined using the Finni 
equation [8]. In Fig. i, lines I represent the distributions of the statistical T, and lines 
2 show the vibrational temperature T i. The solid lines correspond to calculations with 200 
points, and the dashed lines are for calculations with i00 points of subdivision of the 
nozzle. The calculations with 400 points cannot be distinguished from the distributions 
indicated with the solid lines. The crosses denote the results from [7] obtained using a 
second-order cruising approximation. A comparison of the results shows that the calculations 
are sufficiently accurate even for i00 points of subdivision. 

When there exists an extended zone of near-equilibrium flow, condition (2.2) increases 
the time required for finding a solution. Nevertheless, the time can be reduced almost to 
the time required for finding the solution for an ideal gas. In this case, it is necessary 
to divide the flow field into zones of equilibrium and nonequilibrium flow using the Finni 
criteria for the freezing point of the vibrations 

d e / d t  = ~ e / ~ i .  

For ~ < 0.01 the combined solution differs little from the results of direct calculation and can be 
obtained after 700-1000 steps in time. 

3. We will consider the formation of non-steady-state, nonequilibrium flow of nitrogen 
which begins after the breakdown of a diaphragm in an axisymmetric channel simulated by a 
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discharge chamber and the supersonic nozzle of a pulse-driven wind tunnel [I]. This phase 
of flow precedes the asymptotic state studied in [i0, ii] in the approximation of a thermo- 
dynamically ideal gas, including the stage when the nozzle is activated [12, 13]. 

The channel for which the calculations were conducted is represented in Fig. 2 by the 
dot-dash line. The form of the discharge chamber was that of a cubical parabola, and the 
supersonic nozzle had the shape of a hyperbola. The linear gauge s was selected to be the 
distance from the left wall to the critical cross section of the nozzle. The subdivision 
spacing of the channel for the individual calculation variants was (i-0.25~'I0-2s and the 
total number of steps in the x-direction was between 150 and 600. The diaphragm was posi- 
tioned at the front of the channel. The pressure ratio at the diaphragm was initially equal 
to i00, where the statistical parameters in the zone of high pressure corresponded to the 
equilibrium state for T o = 3000 K, and in the zone of low pressure they corresponded to the 
equilibrium state for T = 300~ 

After breakdown of the diaphragm, a low pressure wave was propagated to the left, and 
a shock wave, whose intensity increases along the channel, was propagated to the right. The 
intensity of the shock wave was maximum near the critical cross section. This state is 
shown by curve 1 in Fig. 2, where the shock wave can be seen to pass through the cr~ical 
cross section. Then, a compression wave reflects from the critical cross section (curve 2), 
and a reverse flow is created behind it. Upon reflection from the wall of the discharge 
chamber (curve 3), the shock wave returns to the region of the critical cross section 
(curve 4). This cycle is repeated successively. Curves 1-4 correspond to the moments in 
time 0.i, 0.24, 0.6, and i.i for the period of the cycle from the beginning of the flow forma- 
tion, and the solid and dashed lines represent 600 and 300 subdivision points of the channel, 
respectively, where the number of points in the supersonic section of the nozzle corresponds 
to subdivisions of 200 and i00 points (see section 2). 

A comparison between the calculation results for different quantities of points and the 
data of section 2 allows one to conclude that about 600 points are sufficient for calculating 
the state of the gas in the discharge chamber and the flow of the gas in the nozzle after 
activation. Therefore, the distributions of the statistical and vibrational temperatures in 
the nozzle are similar to those represented in Fig. i. 
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The calculations show that the period of the vibrational processes in the discharge 
chamber t o is equal to the ratio of the duplication gauge ~ to the equilibrium velocity of 
sound ae, which in our case corresponds to the duplicated value of the parameter $ = 
0.54-i0 ~ m/sec (~= 0.37"104 Pa/sec, L = 2"106 m-Pa). 

The vibrational state of the gas in the discharge chamber is combined with a monotonic 
decrease in pressure due to nhe discharge of gas in the nozzle for a comparatively small 
change in the temperature. In Fig. 3 line 1 shows the change in the average temperature 
of the gas in the discharge chamber To, line 2 indicates the change in the ratio of the 
vibrational freezing temperature T i to To, the dashed lines show the change in the maximum 
and minimum values of the pressure at the diaphragm as a function of the dimensionless time 
t = t/t ~ , and line 3 represents the pressure as a function of the time calculated with Eq. 
(12) from [i0] for a quasi-steady-state discharge when the gas is in an isentropic state. 
Line 4 gives the dependence 

P=p~ a*F* r~ T ,~  ' (3.1) 

which is easy to obtain assuming that the gas is in an isothermic state within the discharge 
chamber and the discharge is quasi-steady-state. In relation (3.1) a, is the critical 
velocity of sound, and V is the volume of the discharge chamber. For making the calculation 
of curves 3 and 4 we have included the data for the steady-state equilibrium discharge of 
nitrogen at T o = 3000 K. A comparison of curves 3 and 4 with the dashed lines indicates that 
the pressure drop in the discharge chamber is practically isothermic. Hence, the degree of 
nonequilibrium for the flow increases with time. One must take into account the effects of 
acoustic vibrations from the discharge chamber on the flow for solving some of the problems 
associated with modeling. 

4. We will consider the formation of flow due to the periodic input of energy into 
the flow filament, whose distribution f(x) models the flowing part of the coaxial heater and 
the supersonic nozzle. We will assume that the chamber of the heater expands in size from 
the left and smoothly transfers to the receiving chamber, whose volume substantially exceeds 
the volume of the heater and the nozzle. When the flow begins to develop in the nozzle, 
the operation of the heater has a weak effect on the state of the gas in the receiving chamber, 
and the output compression waves will be greatly attenuated because of the increasing size 
of the channel. Hence, for the left boundary of the flow field one can use the conditions of 
constant entropy and complete enthalpy for the influx of gas and can correctly state the 
boundary conditions (1.122-1.124) from [4]. 

The profile for the flow filament, where the indicated conditions are sufficiently 
satisfied, is shown in Fig. 4 with a dot-dash line. The transonic part of this filament is 
the same as that of section 3. The channel is uniformly subdivided along the x-coordinate. 
The total number of points is 500, which ensures the necessary accuracy in making calculations. 

The energy intake zone is situated at the cross section x = 60, occupying two cells of 
the channel subdivisions along the x axis, and its length was used as a linear gauge of the 
flow. The plots are represented taking into account the conditions of similarity (1.3). In 
particular, the vibrational and statistical temperatures are referenced with the temperature 
of the cold gas T o = 300 K. 

The values for the parameters in the zone of energy intake were formulated in the following 
manner. Beginnng with some moment in time t I after the flow of the cold gas is established 
for t, which satisfies the inequality t - t I - (n - l)t ~ < A, n = i, 2, 3..., one assumes that 
e = e(Tl), T = T 2 for T < T2; for T ~ T 2 the statistical ~emperature did not change, p = 9T 
(p = const). Here, t o is the time between the individual pulses, A is the duration of the 
pulse, and Tl, 2 are the vibrational and statistical temperature in the energy input zone. 
For T l = T 2 we have an approximation for equilibrium energy input; for TI # T2 the energy input 
is in the general case not be in equilibrium. For A < t o the energy input is periodic, and for 
A = t o it is steady-state. In making calculations A = 0.2t ~ 

The initial distributions for the gas dynamic parameters were obtained by establishing the 
solution for the flow of cold gas, which was accomplished through the "breakdown" of the 
diaphragm on the right boundary of the nozzle. Then, the energy input was "turned on". The 
development of non-steady-state flow through periodic energy input with T l = T2 = i0, ~ = 4 
m/sec, L= 5-103m'Paisshown in Figs. 4 and 5. In Fig. 4 the solid lines indicate the 
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distributions of the statistical temperature T, and the solid lines show the vibrational 
temperature T i. In Fig. 5 the solid lines correspond to the distributions for log p, and the 
dashed lines are for the velocity distributions u. 

When the energy input is "turned" on the temperature of the gas changes abruptly from 
T o to TI. For p = const this leads to a sharp increase in the pressure, where the pressure 
peak goes beyond the scale of Fig. 5. On the left and the right of the zone of energy input 
compression waves begin to propagate, and inside this zone a low density wave moves. 

Successive positions of the compression waves between the first and second pulses of 
the energy input are shown by curves 1-5 in the upper part of Fig. 5, and the corresponding 
velocity distributions are represented in the lower part. The data shows that the gas 
initially f~s to both sides of the energy input zone. The left wave is attenuated because 
of the low density wave which overtakes it and the expanding form of the channel. The 
intensity of the right compression wave increases because of the predominating effect of 
the channel's form. It is then reflected from the critical cross section, and at the 
beginning of the second pulse a significant part of the subsonic section of the channel is 
occupied by a region of reverse flow. Such a state greatly increases the intensity of the 
left compression wave after the secondary energy input and determines the first stage in the 
formation of the flow when the heated gas flows to the left of the energy input zone. 

The maximum shift of the hot "plug" to the left occurs at approximately the end of the 
tenth pulse and is shown by curve 0 in Fig. 4. Here, the curves with increasing numbers 
correspond to steps in time of i0 t o . Curves 1-4 represent the second stage in the formation 
of the flow when the remainder of the cold gas flows out, and the plug of the initially heated 
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gas begins to flow to the right. During the third stage (curves 5-7) this plug passes the 
the critical cross section of the nozzle, and in the energy input zone it comes into contact 
with the cold gas. In the final stage (curves 8-10) the remainder of the initially heated gas 
exits the nozzle, and a weakly rippled flow is established. The obtained results conform 
with the given representation of the basic features of transfer processes in the heaters 
[14, 15]. 

It is evident that the approximation used for the equilibrium energy input has some limi- 
tations. One can use a general approach for determining these limitations if it is assumed 
that the statistical and vibrational temperatures in the energy input zone are equal to one 
another. An example of such calculations is shown in Fig. 6, where the transfer stage is 
indicated for the parameters T I = 28, T 2 = 3.3, $ = 0.4 m/sec, L = 50 m. Pa. In the given 
case, the transfer of energy during the process of V-T exchange is complicated because of 
the small value of L, and, on the whole, nonequilibrium flow occurs. 

Parametric calculations done inthe approximation of both equilibrium and nonequilibrium 
energy input for different parameters allow one to make the following conclusions: i) for 
L 4. > 5"102 m'Pa the flow in the heater is nearly in equilibrium, and for L ~ 50 m'Pa it is 
typically in nonequilibrium; 2) for equilibrium flow in the heater the transfer processes are 
basically determined by the position of the energy input zone, and for $ ~ 4 m/sec they weakly 
depend on the frequency of the energy input; 3) the times for the transfer processes increase 
with an increase in the nonequilibrium condition of the flow in the heater (for L < 5"102 m'Pa); 
4) the final state of the flow is a weak function of the frequency of the energy input for 
L > 5"10 ~ m'Pa, ~ > 12 m/sec. 

One should note in conclusion that direct numerical inspection of the role of the simi- 
larity parameters from (1.3) in the example of reproducing both the ripple state of the flow 
in a pulse-driven wind tunnel and the transfer processes with periodic energy input has 
revealed the specific values of these parameters. In addition, the calculation results were 
applied to flows of different diatomic gases, where the relaxation time for the vibrations 
conformed to the interpolation equation of Finni [8]. 

The author thanks A. N. Kraiko and V. L. Grigorenko for useful discussions on the work. 
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THE SLOW BURNING CONDITION IN A DUST-GAS MIXTURE 

B. M. Smirnov UDC 536.46 

i. Combustion-wave propagation in a gas phase is determined not only by the reaction 
rate at the maximum temperature of the gas mixture but also by heat transfer through the gas. 
A rigorous mathematical theory exists [1-5], which relates the wave propagation speed to the 
parameters of the chemical and thermal processes. In particular, the Arrhenius temperature 
dependence for the rate constant k, k % exp(-Ea/T), implies that the wave speed u is 
related to the gas temperature T m after combustion as follows, where E a is the activation 
energy [i, 2]: 

u ~ e x p ( - - E a / 2 T m )  . (ioi) 

In the burning of a dust--gas mixture, there is an additional process that influences the 
speed: the emission from the dust particles. If the transverse dimension of the combustion 
zone is small by comparison with the photon mean free path, the contribution from dust emission 
to the heat balance is related to the wave speed. The less the speed, the longer the time 
spent at the maximum temperature and the greater the dust radiation heat loss. In (i.i), 
the speed is very much dependent on the maximum temperature, so the propagation conditions 
markedly affect the contribution from emission to the heat balance. This leads to two modes 
of burning in a dust-gas mixture [6]. In the fast mode, the emission makes a comparatively 
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